Kohlenwasserstoffverbrückte Komplexe, XXV^[1]

C – C-Kupplung von anionischen Tricarbonylmangan-Komplexen cyclischer Polyene mit kationischen Tropylium-Metallverbindungen; Darstellung und Struktur von (OC)₃Mn(μ - η^5 : η^6 -C₇H₈ – C₇H₇)M(CO)₃, (OC)₃Mn(μ - η^5 : η^6 -C₈H₁₀ – C₇H₇)M(CO)₃ und (OC)₃Mn(μ - η^5 : η^6 -C₈H₈ – C₇H₇)M(CO)₃ (M = Cr, Mo, W)^{*}

Michael Wieser, Karlheinz Sünkel¹², Christian Robl¹² und Wolfgang Beck*

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, W-8000 München 2

Eingegangen am 16. Januar 1992

Key Words: Manganese complexes / Chromium complexes / Molybdenum complexes / Tungsten complexes / Cycloheptatriene / Cyclooctatriene / Cyclooctatetraene / Hydrocarbon-bridged complexes

Hydrocarbon-Bridged Complexes, XXV^[1]. – C–C Coupling of Anionic Tricarbonyl Manganese Complexes of Cyclic Polyenes with Cationic Tropylium Metal Compounds; Preparation and Structure of $(OC)_3Mn(\mu-\eta^5:\eta^6-C_7H_8-C_7H_7)M(CO)_3$, $(OC)_3Mn(\mu-\eta^5:\eta^6-C_8H_1O-C_7H_7)M(CO)_3$, and $(OC)_3Mn(\mu-\eta^5:\eta^5-C_8H_8-C_7H_7)M(CO)_3$ (M = Cr, Mo, W)[±]

The addition of the anionic complexes $[(\eta^4-C_7H_8)Mn(CO)_3]^-$, $[(\eta^4-C_8H_{10})Mn(CO)_3]^-$ and $[(\eta^4-C_8H_8)Mn(CO)_3]^-$ to the cations $[(\eta^7-C_7H_7)M(CO)_3]^+$ (M = Cr, Mo, W) gives the hydrocarbon-bridged complexes $(OC)_3Mn(\mu-\eta^5:\eta^6-C_7H_8-C_7H_7)M(CO)_{3\prime}$

Kationische Tricarbonylmangan-Komplexe von cvclischen Polyenen wurden von Angelici et al.^[3] und in unserem Arbeitskreis^[1,4] zur Synthese von heterometallischen, Kohlenwasserstoff-verbrückten Komplexen eingesetzt. Durch Reduktion von $[(\eta^6 - C_6 H_6) Mn(CO)_3]^+$ konnten Cooper et al.^[5] die bimetallischen Komplexe (OC)₃Mn(μ - η^5 : η^5 - $C_6H_6 - C_6H_6$)Mn(CO)₃ und [(OC)₃Mn(μ - η^4 : η^4 - C_6H_6 - $C_6H_6)Mn(CO)_3]^{2-}$ darstellen. (OC)₃Mn(μ - η^5 : η^5 - C_9H_{12} - C_9H_{12})Mn(CO)₃ wurde bei der Reaktion von [(η^6 - C_9H_{12})Mn- $(CO)_{3}^{+}$ mit AlR₃ (R = Me, Et) als Nebenprodukt nachgewiesen^[6]. Die Reaktion des schon länger bekannten Anions $[(\eta^3 - C_7 H_7)Fe(CO)_3]^{-[7]}$ mit $[(\eta^7 - C_7 H_7)M(CO)_3]^+$ (M = Cr, Mo, W) führt unter C-C-Kupplung zu heterometallischen Dicycloheptatrien-Komplexen^[8]. Ähnliche Verbindungen werden durch Elektronen-Transfer zwischen kationischen Carbonyl-Komplexen von ungesättigten Kohlenwasserstoffen und anionischen Carbonylmetallaten erhalten^[9,10]. C-C-Kupplung fanden wir auch bei der Reaktion von anionischen Fischer-Carben-Komplexen $[(OC)_{5}M = C(OMe)CH_{2}]^{-}$ (M = Cr, W) mit $[(C_{2}H_{4})Re$ - $(CO)_{3}^{+}$ und $[(\eta^{7}-C_{7}H_{7})M(CO)_{3}^{+}]^{+}$ $(M = Cr, Mo)^{[11]}$.

Im Zuge unserer Arbeiten über Kohlenwasserstoff-verbrückte Komplexe setzten wir als Ausgangsverbindungen die von Brookhart et al.^[12] beschriebenen anionischen Komplexe $[(\eta^4-C_7H_8)Mn(CO)_3]^-$ (1) und $[(\eta^4-C_8H_8)Mn(CO)_3]^-$ (3) ein. Analog ist durch Umsetzung von $(\eta^3$ -Methallyl)Mn(CO)₄ mit 1,3,5-Cyclooctatrien in Gegenwart von [Bis(2-methoxyethoxy)AlH₂]Na (Red-Al) das Anion $[(\eta^4-C_8H_{10})Mn(CO)_3]^-$ (2) zugänglich. Die Anionen 1-3 wurden $(OC)_3Mn(\mu-\eta^5;\eta^6-C_8H_{10}-C_7H_7)M(CO)_3,$ and $(OC)_3Mn(\mu-\eta^5;\eta^6-C_8H_8-C_7H_7)M(CO)_3$ (M = Cr, Mo, W). The structures of ${\bf 4b}$ and ${\bf 6a}$ have been determined by X-ray diffraction.

nicht isoliert, sondern in situ mit den kationischen Tropylium-Komplexen $[(\eta^7-C_7H_7)M(CO)_3]^+$ (M = Cr, Mo, W) umgesetzt. Sie reagieren unter C-C-Kupplung mit dem Tropylium-Liganden der Kationen $[(\eta^7-C_7H_7)M(CO)_3]^+$ (M = Cr, Mo, W) unter Bildung der Komplexe 4a-c, 5a-c und 6a-c.

Chem. Ber. 1992, 125, 1369-1373 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1992 0009-2940/92/0606-1369 \$ 3.50+.25/0

In den IR-Spektren von 4-6 sind die v(CO)-Banden der $Mn(CO)_3$ - bzw. der $M(CO)_3$ -Gruppen (M = Cr, Mo, W) charakteristisch. Die genaue Zuordnung der NMR-spektroskopischen Daten gelang mit Hilfe von ¹H-Shift-korrelierten und ¹H-¹³C-Shift-korrelierten 2D-NMR-Spektren. Die an sich symmetrische Cycloheptatrienyl-Einheit ist bei den Verbindungen 4-6 an Fragmente mit einem Chiralitätszentrum (C-7 bei 4, C-8 bei 5 und 6) gebunden. Deshalb zeigen sowohl die Signale von 9-H und 14-H, 10-H und 13-H bzw. 11-H und 12-H bei 4a-c als auch von 15-H und 10-H, 14-H und 11-H bzw. 12-H und 13-H bei 5 und 6 in den ¹H-NMR-Spektren unterschiedliche Verschiebungen. Entsprechendes beobachtet man in den ¹³C-NMR-Spektren. Die Verbindungen 6a - c zeigen wie die durch Methylierung von 3 erhaltenen Verbindungen^[12] fluktuierendes Verhalten. Deshalb fallen in den Hochtemperatur-¹H-NMR-Spektren von 6a - c die Signale von 1-H und 7-H, 2-H und 6-H, 3-H und 5-H, 12-H und 13-H, 11-H und 14-H bzw. 10-H und 15-H zusammen (Abb. 1). Hochtemperatur-¹³C-NMR-Spektren konnten nicht aufgenommen werden, da sich die Verbindungen 6a - c bei 100°C in Lösung rasch zersetzen. Die Signale der Carbonyl-Kohlenstoff-Atome der Tricarbonylmangan-Gruppen sind in den ¹³C-NMR-Spektren der Ver-

Abb. 1. ¹H-NMR-Spektren von **6a** bei verschiedenen Temperaturen (90 MHz, δ-Skala, [D₈]Toluol)

bindungen 4-6 nicht oder nur stark verbreitert bei $\delta \approx 220$ zu erkennen.

Der elektrophile Angriff von $[(\eta^7-C_7H_7)M(CO)_3]^+$ (M = Cr, Mo, W) an die koordinierten cyclischen Polyene in 1-3 erfolgt wie bei der Protonierung bzw. Methylierung^[12] auf der dem Metall-Atom gegenüberliegenden Seite ("exo"). Dies wird durch die Röntgenstrukturanalysen von 4b und 6a bestätigt (Abb. 2, 3). Außerdem sind die Verschiebungen^[13] der ¹H-NMR-Signale von 8-H bei 4a-c bzw. 9-H bei 5a-c und 6a-c und die gefundenen Kopplungskonstanten^[13,14] charakteristisch für die Lage eines Restes auf der dem Metall-Atom gegenüberliegenden Cycloheptatrien-Ringseite ("exo") des (η^6 -C₇H₇R)M(CO)₃-Fragmentes (M = Cr, Mo, W).

Im Kristall von **4b** und **6a** stehen die über C7 und C8 bzw. C8 und C9 verknüpften Polyen-Ringe nicht übereinander. Wie in anderen $(n^6-C_7H_7R)M(CO)_3$ -Komplexen

Abb. 2. Molekülstruktur von **4b** im Kristall (ohne H-Atome); die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit; ausgewählte Bindungsabstände [pm] und -winkel [°]: Mo-C9 246.3(5), Mo-C10 233.2(6), Mo-C11 233.2(5), Mn-C1 224.4(5), Mn-C2 213.3(5), Mn-C3 212.8(6), C1-C2 140.7(7), C1-C7 150.2(7), C4-C5 136.9(7), C5-C6 150.9(7), C6-C7 153.1(8), C7-C8 156.5(7), C8-C9 151.4(7), C9-C10 137.6(7), C10-C11 142.9(7), C11-C12 138.7(8); C1-C7-C8 109.1(4), C6-C7-C8 110.3(4), C7-C8-C9 112.8(4), C9-C8-C14 109.9(4), C1-C7-C6 111.9(4)

Abb. 3. Molekülstruktur von **6a** im Kristall (ohne H-Atome); die thermischen Ellipsoide entsprechen 20% Aufenthaltswahrscheinlichkeit; ausgewählte Bindungsabstände [pm] und -winkel [°]: Cr-C13 231.9(5), Cr-C14 220.4(5), Cr-C15 220.3(6), Mn-C6 223.7(5), Mn-C7 210.7(5), Mn-C8 216.7(5), C4-C5 131.4(6), C6-C7 140.3(8), C10-C11 150.2(6), C11-C4 148.5(6), C11-C12 157.2(5), C12-C13 150.7(7), C13-C14 138.7(8), C14-C15 143.3(8), C15-C16 136.5(8); C13-C12-C18 107.3(3), C11-C12-C18 113.5(4), C10-C11-C12 107.2(3), C4-C11-C12 109.8(4), C4-C11-C10 119.1(4)

 $(M = Cr, Mo, W)^{[10,15]}$ wird bei **4b** und **6a** eine Alternanz der C-C-Bindungen im Cycloheptatrien-Ring beobachtet. In **4b** ist die Bindungslänge C4-C5 etwas kürzer als die anderen sp²-C-Bindungsabstände. Bei (OC)₅Re(μ - η^1 : η^5 -C₇H₈)Mn(CO)₃ ist dieser leicht verkürzte Bindungsabstand zwischen C1 un C2 zu beobachten^[3]. Außerdem ist der Abstand C1-C7 bzw. C5-C6 in **4b** etwa gleich, während bei der an "Re(CO)₅" gebundenen Cycloheptadienyl-Einheit ein Unterschied von ca. 6 pm gefunden wird. Die Struktur des (OC)₃Mn(η^5 -C₈H₉R)-Fragmentes in **6a** ähnelt erwartungsgemäß sehr stark der von (OC)₃Mn(μ - η^1 : η^5 -C₇H₈-CH₃)^[12].

Die beschriebenen Reaktionen beweisen, daß sich die Umsetzungen von kationischen mit anionischen Komplexen ungesättigter Kohlenwasserstoffe zur C-C-Verknüpfung größerer Ringsysteme eignen. Weitere Arbeiten sollen zeigen, ob über diese mehrkernigen Komplexe neuartige, metallfreie Kohlenwasserstoffe zugänglich sind.

Experimenteller Teil

Alle Reaktionen wurden unter Ar mit sorgfältig getrockneten Lösungsmitteln durchgeführt. – IR: Perkin-Elmer 841. – NMR: Joel FX 90 Q, GSX 270, GT 400. – CH-Analysen: Heraeus VT, CHN-O-Rapid.

 $(OC)_{3}Mn(\mu-\eta^{5};\eta^{6}-C_{7}H_{8}-C_{7}H_{7})Cr(CO)_{3}$ (4a): Zu einer Lösung von 200 mg (0.91 mmol) (η³-C₄H₇)Mn(CO)₄^[16] in 15 ml THF werden bei 0°C 0.19 ml (1.82 mmol) Cycloheptatrien und 0.29 ml (1.00 mmol) [Bis(2-methoxyethoxy)AlH2]Na (Red-Al) (3.6 м Lösung in Toluol) zugetropft und 15 min gerührt. Die dunkelrote Lösung wird auf -78 °C abgekühlt und mit 285 mg (0.91 mmol) [(η^7 -C₇H₇)Cr(CO)₃]BF₄^[17] versetzt. Man läßt langsam auf Raumtemp. erwärmen und entfernt das Lösungsmittel i. Vak. Der ölige dunkelrote Rückstand wird zweimal mit je 15 ml Ether extrahiert und auf eine Chromatographiesäule (Durchmesser 1 cm, Länge 20 cm; Kieselgel; Ether) aufgebracht. Die erste orangerote Fraktion wird von einer zweiten braunen Fraktion abgetrennt. Nach dem Entfernen des Lösungsmittels i. Vak. erhält man ein orangerotes Pulver, das aus Ether umkristallisiert und mit Pentan gewaschen wird; Ausb. 189 mg (45%), Zers.-P. 119 °C. – IR (Nujol): $\tilde{v} = 2011 \text{ cm}^{-1}$ vs, 1975 s, 1939 vs, 1920 sh, 1910 s, 1876 s. - 1H-NMR (90 MHz, CD_2Cl_2): $\delta = 0.59$ (m, 1 H, 6-H_{exo}), 1.37 (m, 1 H, 7-H), 1.79 (m, 1 H, $6-H_{endo}$), 2.27 (q, 1H, 8-H, $J_{8,(7,9,14)} = 8.3$ Hz), 3.57 (m, 4H, 1-, 5-, 9-, 14-H), 4.84 (m, 3H, 2-, 10-, 13-H), 5.25 (m, 1H, 4-H), 5.86 (t, 1H, 3-H, $J_{3,(2,4)} = 6.2$ Hz), 6.06 (m, 2H, 11-, 12-H). $- {}^{13}$ C-NMR (22.5) MHz, CD_2Cl_2): $\delta = 28.24$ (C-6), 44.72 (C-8), 58.41 (C-7), 66.96 (C-14), 67.29 (C-9), 73.95 (C-5), 78.70 (C-1), 92.62 (C-3), 98.44 (C-11, -12), 98.79 (C-2), 99.12 (C-4), 99.58 (C-10), 99.84 (C-13), 232.04 (Cr-CO).

C₂₀H₁₅CrMnO₆ (458.2) Ber. C 52.42 H 3.30 Gef. C 50.19 H 3.50

 $(OC)_{3}Mn(\mu-\eta^{5};\eta^{5}-C_{2}H_{8}-C_{7}H_{7})Mo(CO)_{3}$ (4b): 4b wird wie 4a aus 200 mg (0.91 mmol) ($\eta^{3}-C_{4}H_{7}$)Mn(CO)₄, 0.19 ml (1.82 mmol) Cycloheptatrien, 0.29 ml (1.00 mmol) Red-Al und 326 mg (0.91 mmol) [$(\eta^{7}-C_{7}H_{7})$ Mo(CO)₃]BF₄^[18] dargestellt. Das Produkt ist ein rotoranges Pulver; Ausb. 202 mg (44%), Zers.-P. 131 °C. – IR (Nujol): $\tilde{v} = 2011 \text{ cm}^{-1}$ vs, 1980 s, 1938 vs, 1923 sh, 1910 s, 1877 s. – ¹H-NMR (400 MHz, CD₂Cl₂): $\delta = 0.56$ (m, 1 H, 6-H_{exo}), 1.80 (m, 2H, 6-H_{endo}, 7-H), 2.37 (q, 1 H, 8-H, $J_{847,9,14} = 8.3$ Hz), 3.52 (m, 1 H, 5-H), 3.69 (m, 2H, 1-, 9-H), 3.93 (dd, 1 H, 14-H, $J_{14,8} = 8.3$ Hz, $J_{14,13} = 9.3$ Hz), 4.86 (m, 2H, 10-, 2-H), 5.05 (dd, 1 H, 13-H, $J_{13,14} =$ 9.3 Hz, $J_{13,12} = 8.2$ Hz), 5.25 (dd, 1 H, 4-H, $J_{4,3} = 6.2$ Hz, $J_{4,5} =$ 11 Hz), 5.82 (t, 1 H, 3-H, $J_{3,2} = 6.2$ Hz, $J_{3,4} = 6.2$ Hz), 6.06 (m, 2H, 11-, 12-H). - 13 C-NMR (100.5 MHz, CD₂Cl₂): δ = 28.31 (C-6), 47.95 (C-8), 60.68 (C-7), 69.64 (C-14), 70.02 (C-9), 73.90 (C-5), 79.04 (C-1), 92.86 (C-3), 97.62 (C-11), 97.68 (C-12), 100.01 (C-2), 100.67 (C-4), 101.31 (C-10), 101.42 (C-13), 220.41 (Mo-CO).

C₂₀H₁₅MnMoO₆ (502.1) Ber. C 47.48 H 2.98 Gef. C 46.08 H 3.29

 $(OC)_{3}Mn(\mu-\eta^{5}:\eta^{6}-C_{7}H_{8}-C_{7}H_{7})W(CO)_{3}$ (4c): 4c wird wie 4a aus 200 mg (0.91 mmol) ($\eta^{3}-C_{4}H_{7}$)Mn(CO)₄, 0.19 ml (1.82 mmol) Cycloheptatrien, 0.29 ml (1.00 mmol) Red-Al und 405 mg (0.91 mmol) [($\eta^{7}-C_{7}H_{7}$)W(CO)₃]BF₄^[19] dargestellt. Das Produkt ist ein rotviolettes Pulver; Ausb. 295 mg (55%), Zers.-P. 145 °C. – IR (Nujol): $\tilde{v} = 2011$ cm⁻¹ vs, 1978 s, 1937 vs, 1920 sh, 1908 s, 1869 vs. – ¹H-NMR (90 MHz, CD₂Cl₂): $\delta = 0.58$ (m, 1 H, 6-H_{exo}), 1.81 (m, 2 H, 6-H_{endo}, 7-H), 2.50 (q, 1 H, 8-H, J_{8(7,9,14)} = 8.3 Hz), 3.70 (m, 4 H, 1-, 5-, 9-, 14-H), 4.86 (m, 3 H, 2-, 10-, 13-H), 5.33 (m, 1 H, 4-H), 5.82 (t, 1 H, 3-H, J_{3(2,4)} = 6.2 Hz), 6.06 (m, 2 H, 11-, 12-H). – ¹³C-NMR (22.5 MHz, CD₂Cl₂): $\delta = 27.95$ (C-6), 48.46 (C-8), 61.40 (C-7), 61.83 (C-14), 63.26 (C-9), 73.63 (C-5), 78.28 (C-10), 99.87 (C-13).

$\begin{array}{ccc} C_{20}H_{15}MnO_{6}W \ (590.1) & \mbox{Ber. C } 40.71 \ \ H \ 2.56 \\ & \mbox{Gef. C } 40.11 \ \ H \ 2.61 \end{array}$

 $(OC)_{3}Mn(\mu-\eta^{5};\eta^{6}-C_{8}H_{10}-C_{7}H_{7})Cr(CO)_{3}$ (5a): 5a wird wie 4a aus 200 mg (0.91 mmol) (η³-C₄H₇)Mn(CO)₄, 0.22 ml (1.82 mmol) 1,3,5-Cyclooctatrien^[20], 0.29 ml (1.00 mmol) Red-Al und 285 mg $(0.91 \text{ mmol}) [(\eta^7 - C_7 H_7) Cr(CO)_3] BF_4 dargestellt. Das Produkt ist ein$ orangerotes Pulver; Ausb. 217 mg (50%), Zers.-P. 141 °C. - IR (Nujol): $\tilde{v} = 2015 \text{ cm}^{-1} \text{ s}$, 1977 vs, 1934 s, 1915 s, 1894 s, 1871 s. - ¹H-NMR (270 MHz, CD₂Cl₂): $\delta = -0.62$ (m, 1 H, 7-H_{exo}), 0.22 (m, 1H, 8-H), 0.99 (m, 1H, 7-H_{endo}), 1.55 (m, 1H, 6-H_{exo}), 2.23 (m, 1 H, 6-H_{endo}), 2.43 (q, 1 H, 9-H, $J_{9,(8,10,11)} = 8.8$ Hz), 3.02 (m, 1 H, 1-H), 3.40 (m, 1 H, 5-H), 3.60 (t, 1 H, 15-H, $J_{15,(9,14)} = 8.8$ Hz), 3.86 (t, 1 H, 10-H, $J_{10,(9,11)} = 8.8$ Hz), 4.87 (m, 3H, 2-, 4-, 14-H), 5.01 (t, 1H, 11-H, $J_{11,(10,12)} = 8.8$ Hz), 5.99 (m, 2H, 12-, 13-H), 6.17 (t, 1H, 3-H, $J_{3,(2,4)} = 6.6$ Hz). $- {}^{13}$ C-NMR (22.5 MHz, CD₂Cl₂): $\delta = 19.31$ (C-7), 26.89 (C-6), 46.13 (C-9), 47.57 (C-8), 61.38 (C-1), 66.57 (C-5), 67.79 (C-14), 68.32 (C-10), 91.23 (C-4), 92.56 (C-2), 98.55 (C-13), 98.78 (C-12), 99.50 (C-14), 99.69 (C-11), 104.65 (C-3), 232.07 (Cr-CO).

C₂₁H₁₇CrMnO₆ (472.2) Ber. C 53.41 H 3.63 Gef. C 53.07 H 3.66

 $(OC)_{3}Mn(\mu-\eta^{5}:\eta^{6}-C_{8}H_{10}-C_{7}H_{7})Mo(CO)_{3}$ (5b): 5b wird wie 4a aus 200 mg (0.91 mmol) (n³-C₄H₇)Mn(CO)₄, 0.22 ml (1.82 mmol) 1,3,5-Cyclooctatrien, 0.29 ml (1.00 mmol) Red-Al und 326 mg (0.91 mmol) $[(\eta^7-C_7H_7)Mo(CO)_3]BF_4$ dargestellt. Das Produkt ist ein orangerotes Pulver; Ausb. 204 mg (44%), Zers.-P. 152 °C. - IR (Nujol): $\tilde{v} = 2009 \text{ cm}^{-1} \text{ vs}$, 1994 s, 1976 s, 1930 vs, 1912 m, 1872 s, 1856 s. $- {}^{1}$ H-NMR (90 MHz, CD₂Cl₂): $\delta = -0.58$ (m, 1 H, 7-H_{exo}), 0.69 (m, 1 H, 8-H), 0.90 (m, 1 H, 7-Hendo), 1.65 (m, 1 H, 6-Hexo), 2.28 (m, 1 H, 6-H_{endo}), 2.61 (q, 1 H, 9-H, $J_{9,(8,10,11)} = 8.8$ Hz), 3.01 (m, 1 H, 1-H), 3.41 (m, 1H, 5-H), 3.82 (t, 1H, 15-H, $J_{15,(9,14)} = 8.8$ Hz), 4.05 (t, 1H, 10-H, $J_{10,(9,11)} = 8.8$ Hz), 4.91 (m, 3H, 2-, 4-, 14-H), 5.11 (t, 1 H, 11-H, $J_{11,(10,12)} = 8.8$ Hz), 6.06 (m, 2H, 12-, 13-H), 6.18 (t, 1H, 3-H, $J_{3,(2,4)} = 6.7$ Hz). - ¹³C-NMR (22.5 MHz, CD₂Cl₂): $\delta = 19.65$ (C-7), 27.01 (C-6), 48.14 (C-9), 50.56 (C-8), 61.38 (C-1), 66.65 (C-5), 70.33 (C-14), 70.94 (C-10), 91.42 (C-4), 92.59 (C-2), 97.30 (C-13), 97.53 (C-12), 100.60 (C-14), 101.40 (C-11), 104.62 (C-3), 219.78 (Mo-CO).

C₂₁H₁₇MnMoO₆ (516.2) Ber. C 48.86 H 3.32 Gef. C 47.97 H 3.31

 $(OC)_{3}Mn(\mu-\eta^{5};\eta^{6}-C_{8}H_{10}-C_{7}H_{7})W(CO)_{3}$ (5c): 5c wird wie 4a aus 200 mg (0.91 mmol) ($\eta^{3}-C_{4}H_{7}$)Mn(CO)₄, 0.22 ml (1.82 mmol) 1,3,5-Cyclooctatrien, 0.29 ml (1.00 mmol) Red-Al und 405 mg (0.91 mmol) [($\eta^{7}-C_{7}H_{7}$)W(CO)₃]BF₄ dargestellt. Das Produkt ist ein rotviolettes Pulver; Ausb. 310 mg (57%), Zers.-P. 154°C. – IR (Nujol): $\tilde{v} = 2009 \text{ cm}^{-1}$ s, 1988 s, 1974 s, 1927 vs, 1908 s, 1864 s, 1848 s. – ¹H-NMR (270 MHz, CD₂Cl₂): δ : –0.57 (m, 1 H, 7-H_{exo}), 0.67 (m, 1 H, 8-H), 1.02 (m, 1 H, 7-H_{endo}), 1.65 (m, 1 H, 6-H_{exo}), 2.29 (m, 1 H, 6-H_{endo}), 2.69 (q, 1 H, 9-H, $J_{9,(8,10,11)} = 8.8 \text{ Hz}$), 3.00 (m, 1 H, 1-H), 3.42 (m, 1 H, 5-H), 3.77 (t, 1 H, 15-H, $J_{15,(9,14)} = 8.8 \text{ Hz}$), 3.77 (t, 1 H, 15-H, $J_{15,(9,14)} = 8.8 \text{ Hz}$), 4.03 (t, 1 H, 10-H, $J_{10,(9,11)} = 8.8 \text{ Hz}$), 4.89 (m, 3 H, 2-, 4-, 14-H), 5.04 (t, 1 H, 11-H, $J_{11,(10,12)} = 8.8 \text{ Hz}$), 6.02 (m, 2 H, 12-, 13-H), 6.18 (t, 1 H, 3-H, $J_{3,(2,4)} = 6.7 \text{ Hz}$). – ¹³C-NMR (22.5 MHz, CD₂Cl₂): $\delta = 19.71$ (C-7), 26.92 (C-6), 50.83 (C-8), 51.21 (C-9), 60.69 (C-1), 62.29 (C-19), 62.89 (C-10), 66.72 (C-5), 91.27 (C-4), 92.63 (C-2), 93.66 (C-13), 93.92 (C-12), 98.51 (C-14), 99.35 (C-11), 104.73 (C-3), 210.69 (W-CO).

$\begin{array}{rl} C_{21}H_{17}MnO_6W \ (604.1) & \mbox{Ber. C } 41.75 \ \mbox{H } 2.84 \\ & \mbox{Gef. C } 41.16 \ \mbox{H } 2.79 \end{array}$

 $(OC)_{3}Mn(\mu-\eta^{5}:\eta^{6}-C_{8}H_{8}-C_{7}H_{7})Cr(CO)_{3}$ (6a): 6a wird wie 4a aus 200 mg (0.91 mmol) (η³-C₄H₇)Mn(CO)₄, 0.21 ml (1.82 mmol) Cyclooctatetraen, 0.29 ml (1.00 mmol) Red-Al und 285 mg (0.91 mmol) $[(\eta^7 - C_7 H_7)Cr(CO)_3]BF_4$ dargestellt. Das Produkt ist ein orangerotes Pulver; Ausb. 191 mg (45%), Zers.-P. 171°C. - IR (Nujol): $\tilde{v} = 2014 \text{ cm}^{-1}$ s, 1979 vs, 1946 s, 1931 s, 1920 s, 1895 m, 1864 s. - ¹H-NMR (90 MHz, [D₈]Toluol, -20° C): $\delta = 0.96$ (m, 1 H, 8-H), 1.62 (t, 1 H, 9-H, $J_{9,(8,10,15)} = 8.3$ Hz), 2.96 (m, 4 H, 1-, 5-, 10-, 15-H), 4.19 (m, 2H, 11-, 14-H), 4.55 (t, 1H, 4-H, $J_{4,(3,5)} = 8.4$ Hz), 4.69 (t, 1 H, 2-H, $J_{2,(1,3)} = 8.4$ Hz), 4.91 (m, 1 H, 3-H), 5.06 (m, 1 H, 7-H), 5.13 (m, 2H, 12-, 13-H), 5.66 (t, 1H, 6-H, $J_{6,(5,7)} = 8.4$ Hz); (100 °C): $\delta = 1.15$ (m, 1 H, 8-H), 1.90 (q, 1 H, 9-H, $J_{9,(8,10,15)} = 8.3$ Hz), 3.28 (t, 2H, 10-, 15-H, $J_{10(15),[9,11(14)]} = 8.3$ Hz), 4.06 (m, 2H, 1-, 7-H), 4.35 (m, 4H, 2-, 6-, 11-, 14-H), 4.83 (t, 1H, 4-H, $J_{4,(3,5)} = 8.2$ Hz), 5.25 (m, 2H, 3-, 5-H), 5.37 (m, 2H, 12-, 13-H). - ¹³C-NMR (22.5 MHz, CH_2Cl_2 , $-20^{\circ}C$): $\delta = 45.02$ (C-8), 46.12 (C-9), 61.05 (C-1), 63.32 (C-5), 66.25 (C-15), 67.32 (C-10), 93.40 (C-4), 93.63 (C-2), 98.47 (C-12, -13), 98.57 (C-14), 99.02 (C-11), 101.53 (C-3), 123.93 (C-7), 125.46 (C-6), 232.12 (Cr-CO).

C₂₁H₁₅CrMnO₆ (470.2) Ber. C 53.64 H 3.22 Gef. C 52.89 H 3.17

 $(OC)_{3}Mn(\mu-\eta^{5};\eta^{6}-C_{8}H_{8}-C_{7}H_{7})Mo(CO)_{3}$ (6b): 6b wird wie 4a aus 200 mg (0.91 mmol) (n³-C₄H₇)Mn(CO)₄, 0.21 ml (1.82 mmol) Cyclooctatetraen, 0.29 ml (1.00 mmol) Red-Al und 326 mg (0.91 mmol) $[(\eta^7 - C_7 H_7)Mo(CO)_3]BF_4$ dargestellt. Das Produkt ist ein orangerotes Pulver; Ausb. 199 mg (42%), Zers.-P. 165°C. - IR (Nujol): $\tilde{\nu}~=~2014~cm^{-1}$ s, 1988 s, 1974 m, 1944 s, 1931 vs, 1896 s, 1867 s. $- {}^{1}$ H-NMR (90 MHz, [D₈]Toluol, $-20 {}^{\circ}$ C): $\delta = 1.39$ (m, 1 H, 8-H), 1.82 (q, 1 H, 9-H, $J_{9,(8,10,15)} = 8.3$ Hz), 3.25 (m, 4 H, 1-, 5-, 10-, 15-H), 4.28 (m, 2H, 11-, 14-H), 4.58 (t, 1H, 4-H, $J_{4,(3,5)} =$ 8.4 Hz), 4.69 (t, 1 H, 2-H, $J_{2,(1,3)} = 8.4$ Hz), 4.94 (m, 1 H, 3-H), 5.05 (m, 1H, 7-H), 5.17 (m, 2H, 12-, 13-H), 5.66 (t, 1H, 6-H, $J_{6,(5,7)} =$ 8.4 Hz); (100 °C): $\delta = 1.60$ (m, 1 H, 8-H), 2.13 (q, 1 H, 9-H, $J_{9,(8,10,15)} =$ 8.3 Hz), 3.47 (t, 2H, 10-, 15-H, $J_{10(15),[9,11(14)]} = 8.3$ Hz), 4.11 (m, 2H, 1-, 7-H), 4.45 (m, 4H, 2-, 6-, 11-, 14-H), 4.79 (t, 1H, 4-H, $J_{4,(3,5)} =$ 8.2 Hz), 5.28 (m, 2H, 3-, 5-H), 5.42 (m, 2H, 12-, 13-H). - ¹³C-NMR (22.5 MHz, CH₂Cl₂, -20° C): $\delta = 46.87$ (C-8), 48.98 (C-9), 61.08 (C-1), 63.39 (C-5), 68.85 (C-15), 69.89 (C-10), 93.50 (C-4), 93.66 (C-2), 97.75 (C-12, -13), 100.10 (C-14), 100.68 (C-11), 101.53 (C-3), 123.96 (C-7), 125.75 (C-6), 220.36 (Mo-CO).

> C₂₁H₁₅MnMoO₆ (514.2) Ber. C 49.05 H 2.94 Gef. C 47.65 H 2.94

 $(OC)_{3}Mn(\mu-\eta^{5};\eta^{5}-C_{8}H_{8}-C_{7}H_{7})W(CO)_{3}$ (6c): 6c wird wie 4a aus 200 mg (0.91 mmol) ($\eta^{3}-C_{4}H_{7}$)Mn(CO)₄, 0.21 ml (1.82 mmol) Cyclooctatetraen, 0.29 ml (1.00 mmol) Red-Al und 405 mg (0.91 mmol) [($\eta^{7}-C_{7}H_{7}$)W(CO)₃]BF₄ dargestellt. Das Produkt ist ein rotviolettes Pulver; Ausb. 287 mg (52%), Zers.-P. 159 °C. – IR (Nujol):

Tab. 1. Kristallographische Daten von 4b und 6a^[21]

	4b	6a
Summenformel	C ₂₀ H ₁₅ MnMoO ₆	C ₂₁ H ₁₅ CrMnO ₆
Molmasse [g/mol]	502.2	470.28
Kristallgröße [mm]	$0.04 \times 0.08 \times 0.7$	$0.05 \times 0.25 \times 0.52$
Kristallsystem	monoklin	monoklin
Raumgruppe	P21/c	P21/c
a [pm]	1147.3(3)	1269.2(3)
b [pm]	1381.1(3)	1162.9(3)
c [pm]	1236.6(3)	1334.6(3)
β [°]	100.35(2)	102.47(2)
$V [nm^3]; Z$	1.9275(9); 4	1.9234(8); 4
Q_{ber} [g/cm ⁻³]	1.731	1.624
μ[mm ¹]	1.297	1.216
Diffraktometer	Siemens R3m/V	Siemens R3m/V
Meßtemperatur [°C]	22	20
Meßbereich 20 [°]	5-50	2-45
Scanbreite [°]	1.2	1
hkl-Bereich	$-13 \leq h \leq 13$	$-13 \leq h \leq 0$
	$0 \leq k \leq 16$	$0 \le k \le 12$
	$0 \leq l \leq 14$	$-14 \leq l \leq 14$
Gemessene Reflexe	3840	2838
Symmetrie unabhängige	3414	2541
Reflexe		
Beobachtete Reflexe	$2656 [F > 3\sigma(F)]$	$1906 [F > 4\sigma(F)]$
Programme	SHELXTL PLUS 3.43	SHELXTL PLUS 4.11
R	0.0439	0.0381
R _w	0.0311	0.0373
$R_{a}^{[a]}$	0.0257	0.0425
Gewichtung	$1/\sigma^2(F)$	$1/\sigma^2(F) + 0.0004(F)^2$
Verfeinerte Parameter	255	262
Extrema der letzten Diffe-		
renz-Fourier-Synthese		
[e · 10 ⁻⁶ pm ⁻³]	0.81/-0.50	0.34/-0.47
Numerische Absorptions-	r	
korrektur		
(min./max. Transmission)	0.87/0.95	_
	,	

^[a]
$$R_g = \{ [\sum w(F_o - F_c)^2] / [\sum w(F_o)^2] \}^{1/2}; w = [\sigma^2(F) + g(F)^2]^{-1}.$$

Tab. 2. Atomkoordinaten (× 10⁴) und äquivalente isotrope Thermalparameter (× 10⁻¹) [pm²] von **4b**; U(eq) berechnet als ein Drittel der Spur des orthogonalen U_{ii} -Tensors

	x	Y	z	U(eq)
Mo	536(1)	5375(1)	7881(1)	35(1)
Mn	5956(1)	8126(1)	9534(1)	43(1)
C(1)	4776(4)	6849(3)	9018(4)	47(2)
C(2)	5774(5)	6614(4)	9814(5)	58(2)
C(3)	6167(5)	7086(4)	825 (5)	58(2)
C(4)	5644(5)	7929(4)	1156(4)	55(2)
C(5)	4584(4)	8282(4)	611 (4)	48(2)
C(6)	3531(4)	7629(4)	252 (5)	59(2)
C(7)	3540(4)	7087(3)	9173(4)	44(2)
C(8)	2807(4)	6129(3)	9141 (4)	40(2)
C(9)	2690(4)	5605(3)	8051 (5)	48(2)
C(10)	2083(5)	5941(4)	7061 (5)	49(2)
2(11)	1159(5)	6648 (4)	6885 (4)	49(2)
C(12)	563 (5)	7046(3)	7660 (4)	46(2)
2(13)	719(4)	6839 (3)	8815 (4)	40(2)
2(14)	1595(4)	6301(3)	9418(4)	41(2)
C(15)	7116(4)	7857(4)	8779 (4)	51(2)
C(16)	6838(5)	9168(5)	89 (4)	58(2)
2(17)	5078(5)	8790(4)	8468 (5)	57(2)
2(18)	-1141(4)	5334(4)	8073 (4)	48(2)
2(19)	36(4)	4560(4)	6570(4)	44(2)
2(20)	834(4)	4220(4)	8819(4)	40(2)
)(1)	7893(3)	7729(3)	8316 (3)	72(2)
)(2)	7396(4)	9817(3)	424 (3)	91(2)
)(3)	4507(4)	9228(3)	7754 (4)	90(2)
)(4)	-2113(3)	5307(3)	8159 (3)	77(2)
)(5)	-270(3)	4082(3)	5807 (3)	68(2)
)(6)	1040(3)	3551(3)	9372 (3)	61(2)
			• •	

Tab. 3. Atomkoordinaten (× 10⁴) und äquivalente isotrope Thermalparameter (× 10⁻¹) [pm²] von **6a**; U(eq) berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors

	x	Y	z	Ű(eq)
Mn	-1498(1)	1940(1)	460(1)	32(1)
C(1)	-2945(4)	1753(4)	62(3)	39(2)
0(1)	-3850(3)	1566(3)	-153(3)	59(2)
C(2)	-1553(4)	728(5)	1287(4)	47(2)
0(2)	-1580(3)	-63(4)	1787(3)	80(2)
C(3)	-1116(4)	1133(4)	~542(4)	39(2)
0(3)	-819(3)	671(3)	-1187(3)	63(2)
C(4)	701(4)	3398(4)	-325(3)	36(2)
C(5)	-283(4)	3720(4)	-761(3)	38(2)
C(6)	-1340(4)	3422(4)	-566(4)	40(2)
C(7)	-1756(4)	3725(4)	291(4)	44(2)
C(8)	-1266(4)	3530(4)	1325(4)	41(2)
C(9)	-401(3)	2776(4)	1680(3)	38(2)
C(10)	221(3)	2145(4)	1104(3)	32(2)
C(11)	1042(3)	2569(4)	531(3)	31(2)
C(12)	2007(3)	3086(4)	1347(3)	33(2)
C(13)	2986(4)	3376(4)	929(3)	45(2)
C(14)	3598(4)	2579(5)	530(4)	51(2)
C(15)	3719(4)	1380(5)	774(4)	54(2)
C(16)	3349(4)	804 (5)	1520(4)	51(2)
C(17)	2794(4)	1245(4)	2240(4)	44(2)
C(18)	2376(3)	2323(4)	2269(3)	36(2)
Cr	4172(1)	2383(1)	2202(1)	41(1)
C(19)	4132(4)	3713(5)	2961(4)	43(2)
0(4)	4089(3)	4544(3)	3414(3)	61(2)
C(20)	5534(5)	2773(6)	2054(5)	74(3)
0(5)	6400(4)	3042(5)	2042(4)	123(3)
C(21)	4926(5)	1559(5)	3302(5)	60(2)
0(6)	5453(4)	1020(4)	3949(3)	89(2)

 $\tilde{\nu}$ = 2017 cm⁻¹ s, 1971 s, 1942 vs, 1931 s, 1893 s, 1879 s, 1863 m. − ¹H-NMR (90 MHz, [D₈]Toluol, −20 °C): δ = 1.33 (m, 1H, 8-H), 1.83 (q, 1H, 9-H, J_{9,(8,10,15)} = 8.3 Hz), 3.19 (m, 4H, 5-, 15-, 1-, 10-H), 4.13 (m, 2H, 11-, 14-H), 4.57 (t, 1H, 4-H, J_{4,(3,5)} = 8.4 Hz), 4.69 (t, 1H, 2-H, J_{2,(1,3)} = 8.4 Hz), 5.03 (m, 1H, 3-H), 5.05 (m, 1H, 7-H), 5.10 (m, 2H, 12-, 13-H), 5.69 (t, 1H, 6-H, J_{6,(5,7)} = 8.4 Hz); (100 °C): δ = 1.57 (m, 1H, 8-H), 2.28 (q, 1H, 9-H, J_{9,(8,10,15)} = 8.3 Hz), 3.51 (t, 2H, 10-, 15-H, J_{10(15),(9,11(14)]} = 8.3 Hz), 4.17 (m, 2H, 1-, 7-H), 4.44 (m, 4H, 2-, 6-, 11-, 14-H), 4.83 (t, 1H, 4-H, J_{4,(3,5)} = 8.2 Hz), 5.33 (m, 2H, 3-, 5-H), 5.40 (m, 2H, 12-, 13-H). − ¹³C-NMR (22.5 MHz, [D₈]Toluol, −20 °C): δ = 49.76 (C-8), 49.99 (C-9), 59.55 (C-1), 61.01 (C-5), 61.24 (C-15), 62.73 (C-10), 93.17 (C-12, -13), 93.23 (C-2), 93.36 (C-4), 97.46 (C-14), 97.95 (C-11), 101.17 (C-3), 125.42 (C-7), 128.15 (C-6).

> C₂₁H₁₅MnO₆W (602,1) Ber. C 41.89 H 2.51 Gef. C 41.97 H 2.57

Röntgenstrukturanalysen von 4b und 6a: Kristallographische Daten finden sich in Tab. 1, Atomparameter in Tab. 2, 3.

- ^[3] R. C. Bush, R. A. Jacobson, R. J. Angelici, *J. Organomet. Chem.* **1987**, 323, C25 – C28.
- 1367, 323, 623 626.
 ^[4] B. Niemer, M. Steimann, W. Beck, Chem. Ber. 1988, 121, 1767 1769; W. Beck, B. Niemer, J. Breimair, J. Heidrich, J. Organomet. Chem. 1989, 372, 79 83.
 ^[5] D. J. Chem. 1989, 372, 79 83.
- ^[5] R. L. Thompson, S. J. Geib, N. J. Codper, J. Am. Chem. Soc. 1991, 131, 8961-8963.
- ^[6] M. V. Gaudet, A. W. Hanson, P. S. White, M. J. Zaworotko, Organometallics, **1989**, 8, 286-293.
- ^[7] H. Maltz, B. A. Kelly, J. Chem. Soc., Chem. Commun. 1971, 1390-1391.
- ^[8] M. Airoldi, G. Deganello, G. Dia, P. Saccone, J. Takats, *Inorg. Chim. Acta* 1980, 41, 171-178.
- ⁽⁹⁾ B. Olgemöller, W. Beck, Chem. Ber. 1981, 114, 867-876; R. E. Lehmann, T. M. Bockmann, J. K. Kochi, J. Am. Chem. Soc. 1990, 112, 458-459; R. E. Lehmann, J. K. Kochi, Organometallics 1991, 10, 190-202; B. Niemer, J. Breimair, B. Wagner, K. Polborn, W. Beck, Chem. Ber. 1989, 124, 2227-2236.
- ^[10] H.-J. Müller, U. Nagel, M. Steimann, W. Beck, Chem. Ber. 1989, 122, 1387-1393.
- ^[11] J. Breimair, T. Weidmann, B. Wagner, K. Polborn, W. Beck, *Chem. Ber.* **1991**, *124*, 2431-2434.
- ^[12] M. Brookhart, S. K. Noh, F. J. Timmers, Y. H. Hong, Organometallics 1988, 7, 2458 2465.
 ^[13] D. Brookhart, S. K. Saith, J. H. Valantina, J. Cham. Soc. C.
- [^{13]} P. L. Pauson, G. H. Smith, J. H. Valentine, J. Chem. Soc. C 1967, 1061-1065.
- ^[14] M. Karplus, J. Chem. Phys. 1959, 30, 11-15
- [^{15]} J. D. Dunitz, P. Pauling, *Helv. Chim. Acta* 1960, 43, 2188-2197.
 [^{16]} W. R. Mc Clellan, H. H. Hoehn, H. N. Cripps, E. L. Muetterties, P. W. Hawil, L. An. Chem. Soc. 1961, 82, 1607.
- B. W. Howk, J. Am. Chem. Soc. 1961, 83, 1601-1607.
 [^{17]} J. D. Munro, P. L. Pauson, J. Chem. Soc. 1961, 3475-3479; R. B. King, M. B. Bisnette, Inorg. Chem. 1964, 3, 785-790.
- ^[18] H. J. Dauben, R. L. Honnen, J. Am. Chem. Soc. **1958**, 80, 5570-5571.
- ^[19] R. B. King, A. Fronzaglia, Inorg. Chem. 1966, 5, 1837-1846.
- [^{20]} A. C. Cope, C. L. Stevens, F. A. Hochstein, J. Am. Chem. Soc. 1950, 72, 2510-2514.
- ^[21] Die Kristalle von **4b** und **6a** wurden durch Kühlen einer gesättigten CH₂Cl₂-Lösung auf -25°C erhalten. Eine Absorptionskorrektur erschien für **6a** wegen des relativ niedrigen linearen Absorptionskoeffizienten nicht notwendig. Darüber hinaus erbrachte die empirische Absorptionskorrektur mit Ψ -Scan keine Verbesserungen der Ergebnisse. Weitere Einzelheiten zu den Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56131, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[22/92]

CAS-Registry-Nummern

4a: 139582-72-2 / 4b: 139565-23-4 / 4c: 139565-19-8 / 5a: 139582-73-3 / 5b: 139582-74-4 / 5c: 139565-20-1 / 6a: 139565-24-5 / 6b: 139565-21-2 / 6c: 139565-22-3 / $(\eta^3-C_4H_7)Mn(CO)_4$: 33307-32-3 / $[(\eta^7-C_7H_7)Cr(CO)_3]BF_4$: 12170-19-3 / $[(\eta^7-C_7H_7)Mo(CO)_3]BF_4$: 12170-21-7 / $[(\eta^7-C_7H_7)W(CO)_3]BF_4$: 12083-17-9 / Cycloheptatrien: 544-25-2 / 1,3,5-Cyclooctatrien: 1871-52-9 / Cyclooctatetraen: 629-20-9

 ^{*} Herrn Professor Anton Meller zum 60. Geburtstag gewidmet.
 ⁽¹⁾ XXIV. Mitteilung: B. Niemer, T. Weidmann, W. Beck, Z. Naturforsch., im Druck.

^[2] Röntgenstrukturanalysen.